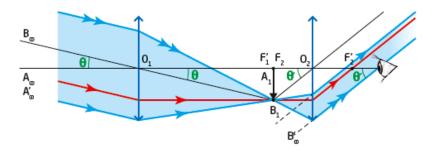
RÉSOLUTION DE PROBLÈME → p.459 du manuel


Chapitre 19

EXERCICE 49 - Nébuleuse M57 - page 459

 \rightarrow Déterminer si la nébuleuse M57 est observable autrement que sous forme ponctuelle à travers la lunette astronomique de Harvard avec un oculaire de distance focale $f_2 = 4,0$ cm.

1. Question préliminaire :

Faisceau de rayons lumineux issu d'un point objet de la nébuleuse M75 traversant la lunette afocale :

2. Problème:

> Solution complète rédigée

- > Détermination du caractère ponctuel ou non de la nébuleuse M57 observée à travers la lunette astronomique de Harvard avec un oculaire de distance focale $f_2 = 4,0$ cm :
- Pour savoir si la nébuleuse M57 est visible autrement que sous forme ponctuelle à travers la lunette astronomique de Harvard, il faut déterminer si l'angle θ ' sous lequel est vue l'image de la nébuleuse M57 à travers la lunette est supérieur au pouvoir séparateur de l'œil, c'est-à-dire que si θ ' > ϵ alors la nébuleuse ne sera pas sous forme ponctuelle.
- On commence par calculer l'angle θ sous lequel est vue la nébuleuse à l'œil nu :

$$\theta = \frac{diamètre(nébuleuse)}{distance\ Terre-nébuleuse} = \frac{1,3 \times 10^{13} km}{2600\ al}$$

$$\theta = \frac{1.3 \times 10^{13} km}{2600 \times 1.0 \times 10^{13} km} = 5.0 \times 10^{-4} \text{ rad.}$$

ullet On calcule alors l'angle θ ' sous lequel est vue l'image de la nébuleuse à travers la lunette afocale :

G =
$$\frac{fr_1}{fr_2} = \frac{\theta r}{\theta}$$
 soit $\theta' = \frac{\theta \times fr_1}{fr_2} = \frac{5.0 \times 10^{-4} \times 6.80 \, m}{4.0 \, cm}$

$$\theta' = \frac{5.0 \times 10^{-4} \times 6.80 \, m}{4.0 \times 10^{-2} \, m} = 0.085 \text{ rad.}$$

• On en conclut que la nébuleuse n'apparaît pas ponctuelle à travers la lunette afocale car 0,085 rad > 3,0 \times 10⁻⁴ rad donc θ ' > ϵ .

RÉSOLUTION DE PROBLÈME \rightarrow p.459 du manuel

> Évaluation par compétences (niveau de difficulté « Initiation »)

		Niveaux de réussite			Coefficient pour	
	Exemples d'indicateurs de réussite	Α	В	С	D	la notation
S'approprier extraire l'information utile	 Le pouvoir séparateur de l'œil est : ε = 3,0 x 10⁻⁴ rad. Le diamètre de la nébuleuse est : diamètre(nébuleuse) = 1,3 x 10¹³ km. La distance entre la Terre et la nébuleuse est : Distance(Terre-Nébuleuse) = 2600 a.l. 1 année de lumière vaut : 1 a.l. = 1,0 x 10¹³ km. La distance focale de l'objectif est : f'₁ = 6,80 m. La distance focale de l'oculaire est : f'₂ = 4,0 cm. 					2
Analyser - Raisonner organiser et exploiter ses connaissances ou les informations extraites	• Pour être observable autrement que sous forme ponctuelle, l'angle θ ' sous lequel est vue l'image de la nébuleuse doit être supérieur au pouvoir séparateur de l'œil : θ ' > ϵ . • L'angle θ sous lequel apparaît la nébuleuse à l'œil nu correspond au diamètre apparent de cet astre : $\theta = \frac{diamètre(nébuleuse)}{distance\ Terre-nébuleuse}$ • L'angle θ ' sous lequel est vue l'image de la nébuleuse à travers la lunette se calcule en combinant les deux expressions du grossissement : $G = \frac{f r_1}{f r_2} = \frac{\theta r}{\theta}$ soit θ ' = $\frac{\theta \times f r_1}{f r_2}$					2
Réaliser savoir manier efficacement des relations mathématiques ; mener la démarche jusqu'au bout afin de répondre explicitement à la question posée	• Calcul de l'angle θ sous lequel apparaît la nébuleuse à l'œil nu : $\theta = \frac{1.3 \times 10^{13} km}{2600 \ al} = \frac{1.3 \times 10^{13} km}{2600 \times 1.0 \times 10^{13} \ km} = 5.0 \times 10^{-4} \ rad$ • $\theta' = \frac{5.0 \times 10^{-4} \times 6.80 \ m}{4.0 \ cm} = \frac{5.0 \times 10^{-4} \times 6.80 \ m}{4.0 \times 10^{-2} \ m} = 0.085 \ rad$ • $0.085 \ rad > 3.0 \times 10^{-4} \ rad \ donc \ la nébuleuse n'apparaît pas ponctuelle.$					2

RÉSOLUTION DE PROBLÈME \rightarrow p.459 du manuel

> Aide à la notation

Première étape :

- majorité de A et de B : note entre 3 et 5
- majorité de C et D : note entre 0 et 3

Deuxième étape :

- majorité de A : note entre 4 ou 5 (majorité de A et aucun C ou D : 5)
- majorité de B : note entre 2 et 4 (uniquement des B : 3)
- majorité de C : entre 1 et 3 (uniquement des C : 2)
- \bullet majorité de D : entre 0 et 2 (uniquement des D : 0 ;

dès qu'il y a d'autres niveaux que du D : 1 ou 2)

Note: /!

La note résulte d'une analyse du tableau avec l'aide à la notation utilisée, mais la décision finale relève de l'expertise du professeur.