Simplifier les expressions suivantes :

1.
$$\overrightarrow{DG} + \overrightarrow{GA} = \overrightarrow{\dots}$$

2.
$$\overrightarrow{BC} + \overrightarrow{FB} = \overrightarrow{...}$$

3.
$$-\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{...}$$

Soit $(\vec{\imath}, \vec{\jmath})$ une base, on donne $\vec{u} \begin{vmatrix} -3 \\ 4 \end{vmatrix}$ et $\vec{v} \begin{vmatrix} 4 \\ -9 \end{vmatrix}$. Déterminer les coordonnées des vecteurs suivants :

1.
$$\vec{u} + \vec{v}$$

2.
$$\vec{u} - \vec{v}$$

$$3. \quad 2\overline{u}$$

Soit $(0, \vec{i}, \vec{j})$ un repère du plan. On donne A $\begin{bmatrix} 5 \\ -1 \end{bmatrix}$ et B $\begin{bmatrix} -7 \\ -6 \end{bmatrix}$ Déterminer les coordonnées des vecteurs suivants :

1.
$$\overrightarrow{AB}$$

2.
$$\overrightarrow{BA}$$

$$3. -3AB$$

Soit $(0, \vec{\iota}, \vec{j})$ un repère orthonormé du plan. On donne $\|\vec{u}\| = 5$. Déterminer les normes suivantes :

- 1. $\|-\vec{u}\|$
- 2. $||3\vec{u}||$
- $3. \left\| \frac{2}{5} \vec{u} \right\|$

Calculer les déterminants suivants :

1.
$$\begin{vmatrix} 6 & 4 \\ 5 & -2 \end{vmatrix}$$

2.
$$\begin{vmatrix} -7 & \frac{1}{2} \\ -6 & 3 \end{vmatrix}$$